miércoles, 26 de junio de 2019

EL UNIVERSO DE GOTTFRIED LEIBNIZ


Como habéis podido comprobar en anteriores artículos míos, en ocasiones me gusta comenzarlos con una cita famosa sobre el personaje objeto del mismo. Tiene un valor añadido cuando la cita en cuestión viene de otra persona, y más todavía si esa persona es un rival contemporáneo suyo. Este era el caso de Denis Diderot, filósofo y escritor francés clave en la Ilustración que, en cierto momento de su vida, hizo la siguiente observación sobre Leibniz:
“Cuando uno compara sus talentos con los de Leibniz, uno tiene la tentación de tirar todos sus libros e ir a morir silenciosamente en la oscuridad de algún rincón olvidado”.


Estas palabras llenas de desesperanza no pueden evocarnos sino la grandeza del que fue el iniciador indiscutible de la filosofía alemana. Una grandeza que no dejó indiferente ni siquiera a aquellos que no estaban de acuerdo con sus ideas. Leibniz es considerado, junto a Descartes y Spinoza, uno de los tres grandes racionalistas del siglo XVII. Y su autoridad fue también enorme a lo largo del siglo siguiente. Incluso hoy seguimos descubriendo la influencia de su gran obra en prácticamente todos los campos del conocimiento (como vimos en el primero de los artículos de esta serie), pues todavía no se ha completado la edición de todos sus escritos. Abordaremos en este artículo su concepción filosófica del universo, que integra elementos de muchos pensamientos de tiempos y espacios diferentes. La filosofía china, de quienes siempre recalcó su importancia como potencia mundial a todos los niveles. El pensamiento griego antiguo, la filosofía escolástica o las ideas de contemporáneos suyos como Descartes y Spinoza.
            Todo en la filosofía de Leibniz nace a partir de la gran pregunta: ¿Por qué existe algo en vez de nada?”.  A lo que Leibniz responde: “Hay una razón en la naturaleza para que exista algo más bien que nada. Esto es una consecuencia de aquel gran principio de que nada se hace sin razón; así como debe haber una razón, además, para que exista esto más bien que otra cosa”. De aquí deducen dos ideas:
·         La existencia de un Dios omnipotente, omnipresente y omnisciente (escuela escolástica) que conoce la razón de la existencia de absolutamente todos los elementos que componen el universo, así como su interrelación e influencia entre ellos (pensamiento de Descartes).
·         Un principio de razón suficiente innato a todos los seres del universo, que dice que todo, incluido el bien y el mal, tiene una razón de existir (que podemos conocer o no). Puesto que Dios es conocedor de todos los principios de razón suficiente del universo, debemos usar la fe (escuela escolástica) ahí donde nuestra razón no llegue a comprender la razón de que algo ocurra, sea malo o bueno. Esto respondía a otra gran pregunta que le surgió durante el que fue su primer trabajo, juez: “¿Dios es justo?”
Pero, ¿dónde se albergan estos principios de razón suficiente nacidos del mismo Dios? Para responder a esta pregunta Leibniz recurrió al atomismo griego, rescatando la idea de que el universo está compuesto de unos elementos indivisibles, inmateriales, indestructibles y únicos, a las que llamó mónadas. Cada mónada es un universo en miniatura (hermetismo) y todas son diferentes, ya que cada una tiene una función única. Esta función está definida por la substancia activa de la que están formadas. Así, marca una gran diferencia con Descartes y Spinoza, que consideraban la substancia como inerte. De todo esto se deduce que todo ser nace con una misión en el universo.
Las mónadas son creadas por Dios (que es la mónada original increada), y existen en potencia en su interior. Ellas compiten por pasar a la existencia real en una suerte de selección natural, donde solo las más capacitadas lo consiguen. De esta manera, el mundo que surge es el mejor de los posibles, con una armonía preestablecida definida de la siguiente manera: toda mónada es independiente y no tiene relación con las demás, sin embargo, sus acciones tienen influencia sobre todas las que le rodean de forma inconsciente. Este es uno de los principios de la filosofía oriental, en la que todo ser tiene una relación inseparable con su entorno y una influencia que se propaga en el espacio y en el tiempo como ondas de un estanque.
Aunque todas estas mónadas nacen de Dios, no son tan perfectas como él, por lo que el universo en su conjunto es también inferior. La armonía preestablecida es la que dirige el mundo hacia Dios, hacia la perfección, por lo que el sentido de la vida es tan solo progresar y evolucionar a mejor. Como vemos, Leibniz ofrece una visión optimista del mundo. Pero no en el sentido anímico de la palabra, como visión de todo lo bueno que se nos presenta, sino en el sentido más matemático de optimización. La optimización es además uno de los principales problemas que quedaron resueltos después de que inventase el cálculo integral. El mundo, pues, es creado como la mejor opción entre las posibles a partir del entendimiento de Dios.
            Esta filosofía recibió duras críticas por parte de Voltaire, que materializó en forma de sátira en su famoso libro Cándido, cuya lectura recomiendo encarecidamente. No obstante, cabe remarcar que Voltaire hizo una interpretación muy literal de este optimismo, quizá más enfocada a vender libros que a aportar nuevas visiones filosóficas.
            Se inició así la corriente filosófica y cultural que influenciaría a todo Europa. Kant continuó la filosofía alemana durante el siglo XIX, aunque era considerado un pesimista. Incluso podemos decir que fue discípulo de Leibniz en el sentido más estricto del término. Y como el universo de Gottfried Wilhem Leibniz comienza y termina en Dios dándole una estructura cíclica, terminaremos el artículo como lo habíamos comenzado: con una cita de Diderot.
«Quizás nunca haya un hombre que haya leído tanto, estudiado tanto, meditado más y escrito más que Leibniz... Lo que ha elaborado sobre el mundo, sobre Dios, la naturaleza y el alma es de la más sublime elocuencia. Si sus ideas hubiesen sido expresadas con el olfato de Platón, el filósofo de Leipzig no cedería en nada al filósofo de Atenas».

Rubén Blasco – Agrupación Astronómica de Huesca

jueves, 31 de enero de 2019

LA GUERRA DEL CÁLCULO, LEIBNIZ Y NEWTON


Nos guste o no, la guerra ha sido siempre uno de los principales motores para el progreso de la humanidad. La gran mayoría de vosotros sabéis que la energía nuclear no se investigó para generar ingentes y relativamente limpias cantidades de energía para nuestro progreso, sino para crear unos artefactos que devastarían la ciudad de Hiroshima primero y Nagasaki después. Muchos de vosotros sí sabéis que internet fue el resultado de un experimento de telecomunicaciones que el ejército estadounidense realizó en los años 70, así como el sistema de posicionamiento global, más conocido como GPS. Seguramente solo algunos de vosotros sabréis que el origen de la carrera espacial no era poner un pie en la Luna; más bien la idea original fue controlar la estratosfera a nivel balístico, o dicho de otra manera, ser capaces de lanzar misiles a la otra punta del planeta sin que el enemigo pudiera reaccionar a tiempo. Pero posiblemente, el ejemplo más desconocido lo tengamos en la invención de la potente herramienta matemática que es el cálculo infinitesimal, que, aunque hoy en día está atribuido por igual a Gottfried Wilhelm Von Leibniz (del que ya hicimos una introducción en el artículo anterior) y a Sir Isaac Newton, tiene una historia que abarca casi dos mil años.



            Leibniz dijo: “Quien comprenda a Arquímedes, admirará menos a los hombres más ilustres de su tiempo”. Y es que cualquier curso universitario de introducción al cálculo infinitesimal empieza por analizar sus trabajos. Si aquel soldado romano no lo hubiera matado cuando entraron a conquistar la ciudad de Siracusa en el 212 a.C., el propio Arquímedes lo habría desarrollado. Pero os contaré primero qué es el cálculo y para qué sirve. Desde la época egipcia uno de los grandes problemas fue el cálculo de áreas. Son fáciles de calcular con superficies delimitadas por líneas rectas puesto que pueden reducirse a triángulos, y tras un arduo trabajo de sumas se obtiene el resultado final. El problema se agrava cuando la superficie está compuesta por líneas curvas, ya que quedan huecos entre los bordes y los triángulos internos. Desde luego pueden rellenarse con triángulos cada vez más pequeños que aumentarán la precisión de la medida, pero nunca llegará a ser exacta. A lo largo de los siglos y con el progreso de la humanidad, surgieron otros tres problemas que generaron la necesidad de una nueva herramienta: calcular la tangente en un punto de una curva cualquiera, convertir curvas en rectas y conocer el valor instantáneo de una función variable. Este último es el tema con el que hemos iniciado el artículo, y es que, tras el desarrollo de las armas de asedio en la alta edad media, se hacia imperiosa la necesidad de conocer con precisión las trayectorias de los proyectiles. Se inició así el lento cambio que nos llevó de la física aristotélica a la actual.

            Casi todos los científicos del S. XVII contribuyeron al desarrollo del cálculo infinitesimal, pero se puede establecer un inicio claro en el S. XVI con gigantes como Descartes, Fermat y Kepler. Descartes y Fermat son conocidos por la gran contribución que realizaron creando la geometría analítica (transformar curvas geométricas en su expresión algebraica) y Johannes Kepler por descubrir que las órbitas planetarias eran elípticas en vez de circulares. Kepler era un matemático portentoso y estuvo a punto de descubrir el cálculo por sí mismo, de hecho, la creación del cálculo infinitesimal por parte de Newton y Leibniz fue en realidad la resolución del problema de Kepler: ¿En qué manera cambiaba a cada instante la trayectoria de los planetas? Por otro lado, Galileo también aportó su enorme “grano de arena” creando el campo de la mecánica, que estudia el movimiento de los cuerpos. Galileo estudió por qué las trayectorias de los proyectiles son parábolas, estableciendo así una relación directa, mediante las curvas cónicas, con los estudios de Kepler. Ya solo quedaba descubrir si la fuerza misteriosa que convertía las trayectorias en parábolas era la misma que convertía las órbitas en elipses. Entraron así en juego en el siguiente siglo grandes como Bonaventura Cavalieri, discípulo de Galileo, que propuso que todas las figuras estaban formadas por indivisibles que llenaban su área. De aquí surgió el famoso principio de Cavalieri de equivalencia entre áreas que no comentaremos ahora. Fermat, Torricelli, Pascal o Gilles Roberval, en incluso el propio Leibniz, continuaron por esta línea. Otros gigantes como John Wallis e Isaac Barrow (profesor de Newton) se acercaron tanto a la definición estricta de cálculo infinitesimal que pusieron la alfombra por la que Newton y Leibniz entraron en la historia.

            Y se inició la guerra. Newton en Inglaterra y Leibniz en Alemania, reclamaban la autoría del cálculo. Ambos llegaron al mismo punto por caminos totalmente diferentes. Si bien Newton desarrolló lo que hoy se conoce como derivadas, Leibniz creó el cálculo integral. Ambas son operaciones contrarias y definen el teorema fundamental del cálculo, dando así solución a todos los problemas relacionados con curvas que habían surgido hasta la fecha (y a muchos otros que surgieron después). Tras años de disputa, Gottfried Leibniz acudió a la Royal Society para que investigaran y concluyeran quién había sido el creador del cálculo. Desconocía que Newton había sido nombrado presidente de la misma. Newton inició así una gran campaña de calumnias y desacreditación de Leibniz sin mucho éxito, pues Leibniz era toda una autoridad cultural en Europa. Con ellos, el cálculo se convirtió en una ciencia independiente, que trabajaba con conceptos algebraicos, lo que permitía plantear un método que sirviera para cualquier tipo de función o problema. Una vez fundamentadas las bases, los hermanos Bernoulli le dieron una estructura sólida, utilizando el método de nomenclatura de Leibniz. El propio Leibniz alabó el gran trabajo realizado por ambos.

            A día de hoy trabajamos con la notación de Leibniz, mucho más clara y completa, y no cabe ya ninguna duda sobre la autoría. Newton es considerado el primero en desarrollarlo, conclusión a la que se llegó tras investigar la numerosa correspondencia en la que hablaba del tema, pero Leibniz fue sin duda el primero en publicarlo. De ahí la famosa frase de Newton: “los segundos inventores no cuentan para nada”.

            No fueron éstas las únicas contribuciones a las matemáticas de Gottfried Wilhelm Leibniz. Desarrolló también un método para calcular series infinitas cuyos límites o resultados eran números finitos, resultados que comunicó a otro gran científico en la corte de París llamado Christiaan Huygens y que presentó también en la Royal Society. También creó, basado en el I Ching o libro de las mutaciones, un sistema que se convertiría en la base del mundo moderno, un sistema basado en su filosofía de mónadas rescatada del atomismo griego y que está a caballo entre el lenguaje y las matemáticas más elementales. El código binario. Pero de eso hablaremos en otro artículo.

Rubén Blasco – Agrupación Astronómica de Huesca